
Monotonicity of Born-Oppenheimer electronic energies for excited molecular states

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 159

(http://iopscience.iop.org/0305-4470/26/1/017)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A! Math. Gen. 26 (1993) 159-170. Printed in the LK 

Monotonicity of Born-Oppenheimer electronic energies for 
excited molecular states 

H Hogreve 
Centre de Physique 'IMorique, h m i n y  Case 907, F-13288 Marseille ccdu 9, France 
and PHYMAT Univenit6 de 'Ibulon e( du Vu, F-831% La Garde, France 

Re~eived 19 June 1992 

Abslrsct W mnsider adiabatic molecular syslems consisting of one electron and N 2 
nuclei with arbitrary posiliw charger. If all the nuclei are arranged on a tine, the 
angular momentum amund the internuclear axis is mnserved; using Ihe mmponding 
separability in qlindncal mrdinates it is shown that Ihe lowest demonic energies in 
each Symmeuy secfor of 6xed angular momentum increase if the internuclear distances 
h o m e  larger. This Bttends previous monotonicity results for the ground stale by l i eb  
and Simon. For the physically most imponant case N = 2 (or N = 3) we give a 
separate pmof that emphasizes the basic role of reflccron pirii&y in this mnten. 

1. Introduction 

In the Born-Oppenheimer approximation a non-relativistic one-electron molecule is 
modelled by the quantum Hamiltonian 

z;zj 
H = h + x  

i < j  IX; - xj I, 

Here h stands for the electronic part of H, 

where 

zi 
N N 

V ( T ) = C V ( T ; X i , Z i ) = - q  ;=I ;=I r - X i l  

and h depends parametrically on the nuclear positions X i  E R3 and charges 
Zi  > 0, i = 1,. . . , N .  The second term in (1.1) describes the nuclear repulsion. 
Clearly it always gives a positive mntribution to the total energy and decreases for 
increasing nuclear separations Rij = lRijI = [ X i  - Xjl. In contrast, the behaviour 
of the electronic energies resultlng from h is a priori not obvious and may depend 
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160 H H o g "  

crucially on the respective state. In fact, all existing rigorous results pertain exclusively 
to the ground-state energy 

ed{RijI1<i<j<N) = ~ o t ' ( { R i j h < i < j < ~ ) l  

(since the dependence on the charges Zi is irrelevant for our considerations, we do 
not indicate it explicitly). The first proof of the monotonic increase of e,(RU) in 
R,, is due to Lieb and Simon (1978) and was given for the case of Lwo nuclei. The 
same result, for N = 2, was rederived by HoffmannUstenhoff (1980) employing 
a somewhat different approach based on differential inequalities (cf also Thining 
1981). Later, Lieb (1982) generalized this monotonicity to systems With N > 2 nuclei 
and demonstrated that eo({R: j } l< i<jCN)  > e o ( { R i j } l g i < j g N )  if Rtj > Ri j  for all 
l < i < j < N .  

Molecular binding requires the existence of a (global) minimum at a finite 
configuration Ri, < CO, 1 < i < j < N, of the potential energy curve associated 
with the total Hamiltonian H. A sufficiently rapid increase in the electronic energies 
is necessary for such a minimum to overcnme (locally) the decay of the nuclear 
repulsion. This competition depends sensibly on the actual values of the Zi, and for 
large 2; one expects that the repulsion effect will dominate and exclude a binding 
minimum for the total energy. Indeed, for the situation N = 2 and Z, = Z, = Z 
it is known (Duclos and Hogreve 1991, 1992) that a charge 2 > 4 renders the total 
energy monotonically decreasing not only for the ground but also for aN ercited states 
of the system. 

On the other hand, apparently there are no rigorous results for the behaviour of 
the electronic curves for excited states. Our aim here is to show that-in analogy 
to the ground state-a monotonic increase continues to hold for a certain class of 
excited electronic energies. lb this end, we assume that all nuclei are located on 
a line which we will take as the <-axis of cylindrical coordinates for B3. Then the 
system is invariant under the symmetry group C,, (Tinkham 1964). In particular, the 
operator L, = ia/&p of angular momentum around the internuclear axis cnmmutes 
(at least formally) with H and h, implying that its eigenvalues m E Z label distinct 
symmetry subspaces of eigenvectors of H and h (and irreducible representations 
of e-"). Denoting by e ,  the lowest eigenvalue of h restricted to the subspace 
labelled by m (cf (2.17) for the precise definition), our main result is the following 
monotonicity property: 

lkorem 1.1. Let { R i j } l g i < j S N  specify a nuclear configuration by Rj, = X i  - 
Xj = Ri j& Rij > 0, with R a ked  unit m o r  in R3, and similarly for 
{R&},<i<;<N.  Then Rij  4 R:j for all 1 < i < j 6 N implies 

em({%j}~<i<j<N) > em(tRi jh<;<j<N)  (1.3) 

for all m E Z and Zi > 0, i = 1,. . . , N .  

Molecules containing only two nuclei, e.g. %t or HeHtt, are always invariant 
under C,, and their energies depend only on one distance parameter R = RIP In 
view of the physical importance of these systems, we reformulate theorem 1.1 for this 
specific situation: 
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Corollury 1.2. F a  all Z,, Z, > 0 the lowest electronic energy e,( R) for each given 
angular momentum m E Z is monotonically increasing in R. 

The basic ingredients of our proof for theorem 1.1 are the (partial) separability of 
the Schrainger equation due to the conservation of the azimuthal angular momentum 
component together with the observation that in each m-sector of the separated 
problem the wavefunction for the lowest state can be chosen to be. non-negative. A 
rigorous discussion of the separation procedure and a derivation of some important 
properties of the separated operators is given subsequently in section 2 Armed with 
these results, the strategy of Lieb (1982) can be. easily adapted to complete the proof 
of theorem 1.1. Since the required changes are minimal, in section 2 we shall only 
sketch the modifications to Lieb's proof. On the other hand, section 3 iC devoted to an 
independent and complete proof of corollary 1.2 based on the fact that the potentials 
involved obey a 'reflection positivity' property. We conclude m section 4 with various 
remarks about possible generalizations and limitations of the monotonicity properties 
of electronic curves. 

2. Separation of variables 

Although the separation procedure discussed later is quite standard in physics if 
applied formally, its rigorous justification including an analysis of the operators arising 
after the separation seems never to have been accomplished in the literature. In fact, 
as pointed out by Miller (1977), separating variables 'proves suprisingly subtle and 
difficult to describe in general'. Thus, the corresponding results of this section may 
be of interest in their own right. 

For the configurations considered, the C,, symmetry suggests a separation in 
cylindrical coordinates ( p ,  <, 4) with p E Rof = R+ U {O], 5 E R, 'p E S' = IO, 2 4 .  
Setting 0 = Rt x R and dw = pdpdC, the relevant Hilbert space is decomposed as 

L2(R3,d3~) = L2(n,dw) @ Lz(S1,dp) = @ L, (21) 
mEC 

where 

and A, = {cg, I c E C}, g,('p) = exp(im'p). The Hamiltonian h is reduced by 
the C, in the sense that 

L, = L2(R,dw) @ A, 

h = @ h m  (2.2) 

h,=hm Ell - V  h % = h : @ l + l @ h l l  

mEL 

where h, acts in L, by 

with 
(2.W 

and we continue to denote the multiplication operator for the potential (now involving 
the mriables ( p ,  C)) by V. 

We recall that the original operator h is self-adjoint on the Sobolev space 
W2,2(R3). The analogous properties of the separated operators are provided in 
the following theorem: 
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Theorem 21. Let h,, h$, h i  and hll be given as in (2.3). 
(i) The kinetic parts h? of the Hamiltonians h, are essentially self-adjoint 

on 'D, 8 Cp(R) for aU m E Z, where for m # 0 the domain 'D, is always 
'D,,, = C ~ ( R t ) ,  whereas 

'Do = {f E Cm(Rt) I 3cf > 0 such that f ( p )  = 0 if p 2 c,, 
and f'( p )  = o( 1) as p + O}. (24) 

(ii) For all m E Z the operator h: is semibounded h: 2 0, and the kernel 
of the generated semigroup exp(-ih$) = exp(-thi)  63 exp(-thll) is pointwise 
non-nega tive. 

(iii) For all m E Z the potential V is relative compact with respect to h?, and 
therefore h, essentially self-adjoint on the same domains as specified in (i). 

(iv) The spectra of the original and separated Hamiltonians are related by 

prwf. (i) Invoking well lolown facts about tensor products (cf theorcm VIII.33 of 
Reed and Simon (1980)) we need only show the essential self-adjointness of h i  and 
hll regarded as ordinary differential operators on 'D, and Cr(R), respectively. For 
hll, the statement is proved in textbooks (see e.g. Reed and Simon 197.5). In case of 
h i ,  first note that this situation corresponds to a singular Sturm-Liouville problem 
(Jorgens and Rellich 1976). The associated differential equation -y" (p) -p- Iy ' (  p )+  
m2p-2y(p)  = 0 has the general solutions y ( p )  = cly,(p) + c;?y2(p) where 

YI(P) = f m  YdP) = P-, i f m f O  

Y,(P) = 1 if m = 0. y2( p )  = In( p )  

For m # 0, choasing clr c2 # 0 leads to y that are neither at p -+ 0 nor at p + CO 

in L2(R+,pdp). Hence, at both endpoints we are in the limit-point case, implying 
the essential self-adjointness of h i  on Cr(R+) by standard methods and resula 
(Jorgens and Rellich 1976, Reed and Simon 1975). If m = 0, then y is not square- 
integrable as p + CO but all solutions y are in L2(Rt,pdp) as p + 0. Thus, again 
we have the limit-point case at infinity, but now a limitcircle situation at the other 
endpoint p = 0, the latter excluding Cr(R+) as domain for essential self-adjointness 
of h i .  Applying the usual procedure to construct boundary conditions (at p = 0) 
that produce self-adjoint extensions (cf chapter II1.4 of Jorgens and Rellich (1975), 
or chapter 8.4 of Weidmann (1980)), one such possible boundary condition is of the 
form lim,,,,pf'(p) = 0, i.e. as imposed on functions in 'Dp That this particular 
choice from the one-parameter family is indeed the 'good' boundary condition for 
the separated operator will become clear in (iv). 

(ii) 'Ib prove h$ 2 0, it is sufficient to verify (4 ,hi4)L2(m+,pdp)  2 0 and 
($, hll$)Lz(z~ 2 0 for 4 E D,,,, $J E Cr(R). Whereas the latter inequality is trivial, 
the fmt one follows from 
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As a consequence, all z < 0 are in the resolvent sets of h k ,  hll and h:. 
Looking MW at the generated semigroups, the kernel of exp(-thll) is explicit 

e-th'' (cl, c,) = (4Tt)-We-(C~ - C W i  . (2.6) 

The pintwise non-negativity of the kernel of exp(-.thk) results from 

( h i  + . ) - ' (P l>PZ)  2 0 

for z > 0, and the relation (Reed and Simon 1978) 

(2.7) 

'lb show the inequality (2.7), let us construct an explicit expression for the resolvent 
in terms of appropriate solutions U of 

($+-&- -- t u = o .  
I d  mz PZ 1 

After a scaling, (2.8) becomes identical m the modified Bessel equation; linear 
independent solutions are, for instance, the modified Bessel functions Im, K,. 
From the known asymptotics of these functions and their derivatives as p - 0 and 
p -t 03 (Olver 1974) in combination with theorem IIL3.2 of Jargens and Rellich 
(1976) (or a direct verification) we conclude that for z > 0 the kernel of ( h k  + t)-' 
is given by 

Fmally, in view of (2.9), the non-negativity (2.7) is just a consequence of I , ( p )  2 0 
and K,(p) 2 0 for p 2 0 and all m 2 0 (Olver 1974). 

We remark that the explicit estimates on the kernels imply that exp-thh,") is 
positivity preserving; alternatively, this could be proved in a more abstract way by a 
verification of the first Beurling-Deny criterion (Reed and Simon 1978) for h:. 

(iu) We first decompose V into a part V,  with compact support that includes all 
points where V becomes singular, and a non-singular part V, = V - V,. By standard 
arguments, the existence of a n 2 1 with a finite trace 

Tr{(V$'(hk + S ) - ' V ' ~ ~ ) ~ }  s,c < 03 (2 10) 

(for s > 0) entrains the relative compactness of V,, V, and thus of &(V, + V,) with 
respect to h:. W r  V ,  and n = 1, the trace in (2.10) becomes 

(2.11) 

The integral (2.11) is finite because at the singularities of V the variable p has, 
of necessity, to vanish, yielding pT<(p, .) < 03, and because integrability 
problems as p ,  IC1 -* 03 are absent due to the compact support of V,. 
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For V,, we use the inequality Tr{(B'12AB'12)"} 6 Tr{B"~2A"Bn~2} (which 
holds for A, B > 0. n 2 1, Cf Lieb and Thimng (1976), Araki (1990)) and estimate 
V , ( p , C ) $ I . ' , ( p = O , C ) ,  V , ( p , C ) < V , ( p , C z O ) ,  toboundthetracein (2.10) from 
above by 

~ m p d p J _ m _ d C ( V , ( p 1 0 , C ) ' 1 2 ( h ~ +  s ) - " ( p , p ; C , C ) V , ( p , ( . ~ 0 ) " I 2 } .  (2.12) 

From the asymptotic behaviour V , ( p  0)*12 D: p-,,12 
as p, IC1 -+CO, and the uniform boundedness of the kernel of (h%+s)-* ,  we deduce 
that {. . .) in (2.12) is certainly integrable if n > 4. 

(iv) For the essential spectrum, relation (25) is easy. Since for all m E Z we have 
u ~ ( h ~ ) , u m ( h l ~ )  c [0,03) = oas(h) and therefore also uar(h,) = u,(hE) c 
us(h) ,  cleariy UmEZu,(hm) c u=(h).  Next, to show u&(hm) c a&(h),  let 
$ be an eigenfunction of h, and-as  before-g,(p) = exp(imp). Since (after 
change of coordinates) the differential equations for the eigenproblems are identical, 
it suffices to verify $@g, E D(h) ,  or, because D ( h )  = W2,2(W3) equals the domain 
of the maximal operator constructed from the differential expression h on Cr(IR3), 
to prove that h($@g,) E L2(R3). Starting by regarding h($@g,)  as a distribution, 
for all + E 

/d3 r+( r )h ($@g, ) ( r )  = Jd3r(hO)(r)($@ g,)(r) 

0, C)"12 D: ICI-"12, V, (p ,C  

= n-m lim /d3r(--A+(r) - Wr)+(r))($, @ g,)(r). (213) 
Here $,, is an approximating sequence for $ (with respect to the graph norm 
of h,) of the form $,, = +; @ $I! with +$ E Dm, +!! E Cr(IR). 
Changing to cylindrical coordinates in (2.13), via partial integrations all derivatives 
a2/a$, a2/ac2, p-l(a/ap)p(a/ap) can be moved to $@g,; the properties of 
$, and g, ensure that all arising boundaly terms do vanish inclusive those for the 
p-variable. In consequence, 

n-co fim /d'r(-A+(r) - V ( T )  4 ( ~ ) ) ( $ , ,  @g,,,)(r) 

and since in (2.14) {. . .}(+; @ $11 @ 9,) = h,$, @ g, mnverges to a L2-function 
as n -+ 03, it follows that h(+ @ g,) E L2(R3),  thus concluding the proof of (2.5) 
(the inverse inclusion, although true, is not needed for our purposes). 

Note that at this point it turns out that the additional boundaly condition (at 
p = 0) specified for Do is indeed the 'correct' one. Namely, all other possible self- 
adjoint extensions for h: have domains containing functions $; with + $ ( p )  a In(p)  
as p -* 0. However, for such functions the boundaly term in (2.14) 

m 
P + ( T ( P , C , + ) ) ( ~ ( P ) } [  d$$ =-+(r ( fJ  =O,C,+)) 

p=U 

does not wnish in general; instead, it leads to a b(p)-type contribution for 
h ( $ , , @ g , )  showing that in this case h($@g,) L2(W3). 0 



Mono~onicig of Bom-Oppenheimer electronic energies 165 

With theorem 21 at our disposal, we can proceed with the proof of theorem 1.1 
along the same steps as employed by Lieb (1982). Therefore, here a brief sketch 
of the simple modifications necessary to adapt Lieb's prmf to the present situation 
is sufficient First we obsewe that, also when working in cylindrical coordinates, 
the representation of the exponential of the Coulomb potential (or its regularized 
version) as stated in equation (7) of Iieb (1982) remains valid, i.e. for b > 0 

with a positive measure dp(t;b) (note: we have chosen R in the Cdirection). 
Furthermore, introducing, in analogy to equation (8) of Iieb (1982), 

z ( I R i j } l g ; < j < N ; P )  = J d(I . . . (ICK 

(z 16) 

a onedimensional version of lemma 4 of Lieb (1982) shows that now pointwise in p 
the inequality Z ( { R : j } l g i < j 6 N ; p )  < Z ( { R i j } l $ i < j g N ; p )  holds if Rij <.Rij  for 
all 1 < i < j < N. In (2.16) the quantities Aij ,Xi j  satisfy the same requuements 
as those in lemma 4 of Iieb, and the X i j  correspond to the parameters called 
Rij by Lieb. More precisely, the X j j  arise from a multiple application of (215) 
within a 'b t ter  product formula, ie. X i j  E { lX,l ,  k = 1, ... , N )  where we 
place the 'leftmost' nucleus, e.g. k = 1, at the origin (hence IXII = 0) and the 
remaining ones on the positive C-axis. Enlarging the internuclear distances Rij > Ri j ,  
I < i < j <  N,evidentlyentails l X i , - X k n l >  IX,,-X,,Iforallic,I,m,n. The 
function F ( p , ,  . . . , p K )  in (2.16) can be assumed to be non-negative due to (215) 
and assertion (i) of theorem 21. This form of Z as written in (216) reflects, in 
particular, the fact that the k m e l  

e-thb,'(pi, p j ;  ci, c,) = e-thl,(pi,pj)(4nd)-1/2e-(C'-(i)z/4t 

is still Gaussian in the relevant (-variables and e x p ( - t h A ) ( p i , p j )  2 0. Hence, 
pointwise in p, an analogue of theorem 5 (in the C and R mriables) of Iieb 
(1982) can be easily established for the kernel G , ( p , C , t , { R i j } l c i < j g N )  = 
exp(-th,({Rjj)lgi<jgN)) ( p , C ) .  Then, the desired inequality (1.3) for the 
energies 

follows by the Same arguments as in Lieb (1982). 
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3. Reflection positivity and monotonieity of deetronie energies 

In this section, we bring in the concept of reflection positivity and establish the 
constituents that will eventually be brought together for a proof of corollary 1.2. 
Including such an independent proof of the physically significant corollary 1.2 makes 
not only the present paper self-contained in this respect, but it is our belief that the 
role of reflection positivity in monotonicily problem is of fundamental importance. 
In fact, the reflection principle is already implicit in the first monotonicity proof of 
Lieb and Simon (1978) and our line of reasoning is just a generalization of those 
previous arguments. 

Wing back to Nelson (1973), the reflection principle serves as an important 
tool in constructive quantum field theory; reflection positivity is one of the so-called 
OstelwalderSchrader axioms. Schrader (1977) employed the reflection principle to 
derive correlation inequalities for the Jsing model (for the closely related method of 
‘duplicated variables’, cf Messager and Miracle-Sole (1977), and some generalizations 
cf Hegerfeldt (1977)). W r  our purposes, we can restrict the discussion to reflections 
in R3 with respect to planes orthogonal to the C-axis (of cylindrical coordinates). 
Thus let 9, denote the reflection with respect to the plane passing through the 
point { = Q, ie. O , ( p , C , ( . )  = ( p , 2 ~  - {,p), and e,, the induced mapping on 
functions f : W 3  + @, i.e. Oaf(.)  = f (Gar) .  hrthermore, setting 0, = {T E R3 I 
r = p g p  + { e ,  + (.&,with( < Q},  we define the set ‘RP, of functions obeying the 
reflection principle on 0, by 

R P ~  = ( f : ~ ~  + R I Vr E 0, : eaf(r) < f ( r ) } .  

The set of ‘reflection positive functions’ is defined by 

RP: = (f E R P ~  IVr E 0,: f ( r )  2O}. 
Note that RP: is a positive cone (i.e. ci f i  E RP: if all f i  E ‘RP: and ci 2 0) 
closed under multiplication. In addition, if g:W -+ R, g 2 0 is monotonically 
increasing and f E RP:, then also g o f E RP:. Any function f :R3 -+ R can be 
decomposed into its even (+) and odd (-) components with respect to ea, 

f* = g f  * o a f )  
and clearly f E R’P: implies f* E RP:. 

The following ‘eorrelation inequality‘ is more or less the first Griffiths inequality 
(cf also lemma 1 of Jieb and Simon (1978)) rewritten into a form that will be applied 
later. 

Lemma 3.1. Consider f i  E R’P:, i = 1,. . . ,n such that for the given set of 
coefficients aij  < 0, i , j  = 1,. . . , n the integral in (3.1) below does exist. Then 
with dh{ = ny==, dCi, for ail r k  = pk&p + + pkG9 E W3 

Pro$ Due to translation invariance (Ci - Q - ( C j  - Q))* = ( C i  - C j ) z  we can 
w u m e  that 9a is a reflection with respect to the plane passing through the origin 
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C = 0. Expanding the exponential and decomposing the fk into even f,' and odd 
f; components with respect to Ou, (3.1) becomes a sum of integrals of the form 

that either vanish if there is a factor g- in the product, or due to symmetry can be 
reduced to integrations over half-lines where the integrands are non-negative since 
all g: E R P t .  17 

The next lemma shows that the potentials and their R derivatives are reflection 
positive if the reflection is taken with respect to the 'outer' nucleus (regarded from 
eR). Since in the following also regularized potentials will be used, we formulate 
the statement in an appropriate generality: 

Lemma 3.2. Let R E Iw3 be given by R = Rec with 0 < R Then for all E E R the 
potential 

and its derivative -dV,/dR are reflection positive with respect to 0,: 

I+@. Straightfolward computation produces 

(3.3) 

which is obviously non-negative if C < R. Under the same condition, non-negativity 
holds for the difference 

d K  d K  222(R - C )  - E(') = 
( J p 2  + (C - RIz + c2)' 

of the derivatives. 

Proof of corollary 1.2. 'Ib c a y  out the proof of corollaly 1.2, as Jieb and Simon (cf 
also (2.17)) we express the energies e, as e, = -Iimtdw t-Ih(4, exp(-th,)4) 
where 4 is any non-negative square-integrable function 4 f 0. %king 4 E Cr(R3) 
and using the differentiability of e, (cf Thirring (1981) and references therein) we 
get 
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(the right-hand side of (3.4) converges uniformly in R thus justifying the exchange 
of l i h ~ ~ + ~  and d/dR). Furthermore, we choose 4 of the form 4 ( p , C , y )  = 
~ + 5 ~ ( p ) & C )  with bL(p) 2 0 and 411 E RP;. Approximating the potential in h, by 
its regularized version (3.2) then allows the application of the ?totter product formula 
for the semigroups, yielding 

where we used the abbreviations p@vn) = ( ~ - ~ , p - ~ + ] ,  . . . , ~ ~ - ~ , p , , )  and similarly 
for C(k,n), and where. 

is pointwise non-negative by (U) of theorem 2.1. The analogous quantity RI1 contains 
explicit Gaussians 

and W;.s;k,n is given by 

n7&;kpn (p(k-1,"); p - 1 , " ) )  = e(~/k)V.(P-L+l'(-t+l) x . ., x e(s/k)V.(Po,Cd 

c,)) e((t-*)/n)v.(pt.(t) . . . e((:-a)/n)~.(pn,~.), ( :; 
The non-negativity of {. . .) in (3.5) and thus also (de,/dR)( R) 3 0 follows now 
from the observation that all terms in {. . .) satisfy the prerequisites of lemma 3.1, 

0 completing the proof of corollary 1.2. 
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4. Monotonicity for other states and systems 

Fbr N > 2 and arbitrary configurations {Rij}lsi<jCN, a generalization of lemma 3.2 
(conceming dV/dR) is unfortunately not straightforward. Nevertheless, if only an 
outermost nucleus is moved such that, for example, Xi’ = X, and R;, 2 R,, for 
i = 1,.  . . , N - 1, then in the corresponding derivative of the potential only the term 
linked with the Nth nucleus appears, and lemma 3.2 can be simply extended to such 
a situation if the reflection is with respect to this outer nucleus. As a consequence, 
for these configurations (which include the general N = 3 case) theorem 1.1 also 
follows from a proof based on the reflection principle. Moreover, all statements can 
be generalized to potentials other than Coulomb potentials if these potentials allow 
the partial separation induced by the cylinder symmetry and obey the prerequisites 
assumed in Lieb’s proof or the reflection positivity of section 3. The monotonicity 
proofs of Lieb and Simon, Hoffmannestenhoff, and that of section 3 qu i re  
differentiability (in R) of the electronic curves; to avoid this condition, one might 
try to modify the ‘infinitesimal’ nature of these proofs by estimating the difference 
e,(R’) - e,(R) instead of the derivative de,/dR. However, due to the behaviour 
of V( R) - V(R’) on the inteml C E [R, R’], the desired extension of lemma 3.2 is 
not obvious. 

An attempt to establish monotonicity for more electronic C U N ~  has to face 
the fact that there are states whose electronic energies definitely do not behave 
monotonically (see also the remark (4.6.26;3) in Thimng (1981)). On the other hand, 
for N = 2 numerical experience (Hogreve 1992) suggests the existence of a larger 
class of states for which electronic monotonicity holds. To characterize these states, 
recall that one-electron N = 2 systems are completely separable in prolate spheroidal 
coordinates, and in the united atoms limit R = 0 all states become hydrogenic-like 
(with 2 = 2, + Z2). Therefore we can label the electronic energies emf, by the 
usual hydrogen quantum numbers n, l ,  m. Then, motivated by the numerical results, 
we put forward the following conjecture. 

Conjecture 4.1. For all n E N, 1 E N U  {O}, m E Z with n 2 Iml+ 1, 1 = Iml the 
electronic cuwes enf,(R) are monotonically increasing in R. 

In corollary 1.2 we demonstrated the monotonicity for states with n = Iml + 
1, 1 = Iml. The reason preventing a direct extension of the proofs of the preceding 
sections to the more general assertion of conjecture 4.1 is related to the following. 
Despite complete separability, the energies emf,( R)  are only determined as implicit 
functions because a (non-explicit) separation constant A,,,(R) is also involved. The 
prolate spheroidals (E,q,v) are, in a certain sense, not ‘good’ coordinates for a 
monotonicity proof, since neither F nor q is parallel to the C-variable (of cylindrical 
coordinates) whereas our arguments in sections 2 and 3 showed that just the behaviour 
in the C-variable is decisive for the monotonicity. 

For systems with more than one electron-as already mentioned by Lieb and 
Simon-the electron4ectron repulsion may also cause additional problems for the 
validity of the electronic monotonicity. Nevertheless, at least if the system is neutral 
or has a positive total charge, not only the ground-state energy can be expected to 
behave monotonically, but a monotonicity of the more general kind as in theorem 1.1 
should hold. 



170 H Hogreve 

Conjecture 4.2. Theorem 1.1 remains valid for the electronic energies of an n- 
electron molecule, i.e. if the kinetic and potential operators in (1.2) are replaced 
by 

N and if n < Zi. 

For n = 2 and electronic singlet states, it might be interesting to prove 
conjecture 4.2 using the methods of Lieb (1982) and the present study. More intricate 
situations where the state is no longer represented by a nodeless wavefunction (at 
least away from a symmetry axis), however, certainly call for other and probably more 
elaborate strategies. 

Acknowledgment 

I am grateful to Dr P Duclos for his hospitality at the CF'T 

References 

Arab H 1990 Len. Marh Phys 19 167 
Duclos P and Hogreve H 1991 On the stability of positive diatomic molecular ions Aoc. CnnJ Eigorous 

Rcrulrs iz Q u a "  q " i m  (Liblics 1990) ed J Dittrich and P Ewer (Singapore: World Scientific) 
pp 63-70 

- 1992 On the monotonicity of abiabalic CUNS of lhe One-electmn diatomic molecular ion, to be 
submitted, and work in progress 

Hegerfeldt G C 1977 Commun M a h  P l y .  57 259 
HoEmann-Ostenhoff T I980 J .  Phyx A: Marh Gar 13 417 
Hogreve H 1992 On the stability of the oneelectron bond J .  Chm Phys (to appear); 1992 On the 

Jiirgens K and Rellich F 1976 Eigenwarrheorie p 6 h n l i c k n  LXfnmria!&chmgm (Bedin: Springer) 
I ieb E H 1982 J .  Phys B: AL MOL P~JK. 15 L63 
Iieb E H and Simon B 1978 J .  Phys. B: At MOL P h p  11 1537 
Iieb E H and mining W 1976 Inequalities for the moments of the eigenvalues of the Schriidinger 

Hamiltonian and their relation to Soblev inequalities Smdics m M&arical Physics, &says in 
Honor of W I d m  ed E H Ueb, B Simon and A Wighlman princeton: Princeton 
University Press) 

binding and Xnding-melamorphosis of the ZlZze- system, to k submitted 

Messager A and MiracleSole S 1977 J.  SraL Phys 17 245 
Miller W Jr 1977 5pn"ry md Separation of Vmiablcs (Enqchpedia of Mathmatiics md irs Applicationr 

Nelson E 1973 COnrauctive Q u a m  Field M y  ed G Vel0 and A Wghlman (Berlin: Springer) 
Olver F W J 1974 Aynplotim md Speciczl FmcriOns (New York Academic) 
Reed M and Simon B 1975 Merhcds of Modem Marhmarical Physics II, Fourier Ana$ Se.&fdjoinmess 

- 1978 Methods of Modecm Marhemarical Physm n: h a i y i  of Oparors (New York: Academic) 
- 1980 Mehods of Modem MaIhematical Physics I ,  FuncriOnaiAna& Znd edn (New York Academic) 
khrader R 1977 Phys. h. B U 2798 
mining W 1981 A Come in Mathematical Physics wl 3, Quanaun Mechanics of Atom and Moh1e.s 

Tinkham M 1964 Croup 'l7k-o~ md Quantum Mechanics (New York McGraw-Hill) 
Widmann J 1980 Linear @erafors m Hibm Spaces (New York Springer) 

4) ed G C Rota (Reading: Addison-Wesley) 

(New York Academic) 

p e n :  Springer) 


